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I N T R O D U C T I O N  

A new mathematical description Of a Long Tube Vertical (LTV) evaporator is formulated by 
introducing Sleicher's turbulence model (Davis 1%5) for the region close to the tube wall. As a 
consequence, the momentum and energy equations can analytically be integrated with respect to 
the radial coordinate. Differently from the previous formulations of Dukler (1960) and 
Kroll-McCutchan (1968) who both used Deissler's turbulence model, the problem is here reduced 
to the integration of a system of first order ordinary differential equations, describing the variation 
of the various quantities along the tube. 

DES CRI P TION OF THE MODEL 

The liquid and vapor distribution shown in figure 1 has been assumed in the present paper. 
The following assumptions are made: 
(a) no liquid entrainment in the vapor; 
(b) no waves on the film surface; 
(c) the shear stress distribution in the film is linear; 
(d) the film thickness A is negligible with respect to the tube radius R; 
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Figure 1. Liquid and vapor distribution. A: Condensing vapor; B: Condensed film; C: Evaporating brine film; 
D: Vapor. 
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(e) evaporation takes place at the film surface in equilibrium with the local temperature 7' and 
pressure p : 

(f) liquid motion is turbulent and the velocity u is in equilibrium with the local value of the 
quantities on which it depends; 

(g) the momentum and energy turbulent transport in the film is described by Sleicher's model in 
the region close to the tube wall and Von Karmhn's model in the remaining part of the film. 
The eddy diffusivity e is therefore given by the following expressions: 

Avy ~: v ~ -< 26 

E(V~) = /  ~ 11] " \ 2 (Ou+\  3 / [ 0 2 u  ~\2 y >26  

where y~ = [V(r~,/p)/v]y is a dimensionless distance from the tube wall; y is the distance from the 
tube wall; r~ is the wall shear stress: p is the liquid density; v is the kinematic liquid viscosity; A is 

a dimensionless constant equal to 0.091; a' is Von K~rmhn's universal constant equal to 0.4. 

Assumptions (a) and (b) have been introduced in order to simplify the computation of liquid 
film thickness and flow rate. Their influence will be partially taken into account in the 

computation of the friction pressure drop. 
Assumption (f) is of basic importance for the present formulation since it allows calculation of 

the local liquid film heat transfer coefficient h and flow rate F as a function of the local value of the 

interface shear stress. 
Assumption (g) allows calculation of an analytic relationship between film flow rate, local heat 

transfer coefficient and film thickness. 
In the framework of the assumptions made, the momentum and energy equations can be 

integrated analytically with respect to the radial coordinate, yielding the following expressions 
for the film flow rate and the heat transfer coefficient: 
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where: rl = [X/(rw/p)lv]A is a dimensionless film thickness; ~r 3--- 1 L -  r~/r~ ; r~ is the interface 
shear stress; u+---[u/V(rw/p)] is a dimensionless local film velocity; c_~=X/(1-26tr3/rl)+ 
(l+26A2/2X)(~r3/rt/1-26~3/rl); c, = c 2 - ~ / ( 1 - o 3 ) :  c3 = 1/X[c21n(c2-v '( l -26~3/rl))  + 
,,/(1 - 26tr3/rl)]; c4 = [2(0 - ~/(1 - 2 6 o ' 3 / ' O ) ) / x c r 3 / ' O ] { C z [ C 2  - ( c 3  - W ( I  - 26cr3/rl))/2] In 
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(c3 - X/(1 - 26tr3/n)) + (c3 - ~/(1 - 26o'31n))[(c~ - X/(1 - 26o31rl))13 - 3c2/41I. 
Expressions [2] and [3] are valid for both evaporating and condensing films and reproduce the 

relationship between film flow rate, heat transfer coefficient, interfacial shear stress and film 
thickness reported in graphical form by Dukler (1960). The total heat transfer coefficient is 
computed by taking into account the two films and tube wall heat resistence. 

The liquid film flow rate variation along the tube axis is given by the two equations: 

dF_..__~, = _ 27rR h, (To - T~ ), [4] 
dz H~ 

dFc He dFe 
dz H~ dz [5] 

where F, is the evaporating film flow rate; Fc is the condensing film flow rate; H is the 
evaporation enthalpy; z is the axial coordinate; h, is the total heat transfer coefficient; Tc is the 
condensing liquid temperature; Te is the evaporating liquid temperature. 

Temperatures T, and Tc are intended to be computed at the liquid-vapor interface. 
For the assumption (e) the two temperatures Te and Tc depend only upon the pressure 

through Clausius-Clapeyron equation. Generally, Tc can be assumed as a constant and known 
among the plant characteristics. 

Inside the tube, the pressure is a function of the liquid film flow rate through the relationship: 

dp [dp'~ 1 Fv dro] 
[61 

where (dp/dz)~r is the friction pressure drop; po is the vapor density; Av = ~r(R - A) 2 is the vapor 
flow area; uR-a is the interface velocity. 

Expression [6] has been obtained through integration of the momentum equation in the radial 
direction with the assumption that the square mean velocity is equal to the mean square one. 

The last term on the RHS represents the acceleration contribution to the total pressure 
gradient and can have a magnitude equal or also greater than the friction term. On the other hand, 
it can be remarked that the liquid film flow rate and heat transfer coefficient only depend upon the 
shear stress at the liquid-vapor interface and therefore uniquely upon the friction pressure drop. 
This latter can be computed with the aid of one among the several correlations known in the 
literature. 

RESULTS AND INFLUENCE OF PROCESS VARIABLES 

The ordinary differential equations [4] to [6] together with [2] and [3] and the equilibrium 
one, fully describe the operations in every element of a LTV plant. Once the conditions at the 
tube inlet or outlet are given, the numerical integration of this system of equations provides the 
local value of the main characteristic quantities such as pressure, temperature, liquid film flow 
rate and heat transfer coefficient. 

The model predictions have been compared with the experimental data of Wrightsville Beach 
(Badger & Associated, Inc. 1959) and Freeport (Stearns Roger Co. 1964). Since the conditions for 
these plants were only known at the outlet, the equations were integrated starting from the outlet 
and going backwards up to the point where the condensing film was exhausted. The evaporation 
length computed in this way was checked to be always less (about 20%) than the effective tube 
length. 

A more interesting quantitative comparison with the experimental data of I.R.S.A. plant in 
Bari (Beccari et al. 1973) is shown in table 1. For these data, conditions were known at the inlet 
and the evaporating film was always entering at its boiling point. The first column data were 
obtained using distributors of the cone type whereas for the second column data a vortex 
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Table 1 

U(W/m2°C) 

Re(, ~(°C) ~T,,(°C) Cone Vortex Model 

2555 100.5 4.0 - 4743 4377 
4989 100.2 4.5 3692 5292 4516 
7540 100.2 4.5 3676 5283 4646 
2555 100.6 5.8 -- 4665 4417 
4989 100.4 6.0 3599 4975 4546 
7540 100.5 5.9 3716 5109 4672 
2550 111.5 3.9 - 4961 4437 
4966 111.2 4.2 3634 5504 4562 
7526 111.2 4.4 3878 5544 4696 

arrangement was used. The better agreement of the model with this latter data seems to be due to a 

more uniform distribution of the evaporating film. For all comparisons, the friction pressure drop 

was computed using Lockart-Martinelli 's correlation (1949). 

In order to put in evidence the dependence of the overall heat transfer coefficient U upon the 

main process variables, a parametric study was performed. The region that was investigated is 

characterized by the values shown in table 2. Computation of variable main effects and their first 

order interactions showed that U has a monotonous dependence upon inlet Reynolds number 

Table 2 

2500 _< Re,, <- 7500 
50°C _< T,,-< 125°C 
3°C _< ATo-< 9°C 
2m_<L_<6m 
o.d. = 5.08 cm 
i.d. = 4.88 cm 

Reo, temperature To and temperature drop ATo. It does not present a monotonous trend with 
respect to the tube length L. The most important interactions resulted those between length and 

temperature drop, length and film Reynolds number and length and temperature. The results of 

this parametric study thus provided the following expression for the overall heat transfer 

coefficient: 

U(W/m2°C)=201Re°-2500}-267T°-50178AT°-32500 25 3 + 97 ( ~ - - ~ ) 2  - 97 L - 2 2  

(L  - 2~ z (Reo - 2500) (L - 2) (To - 50)(L - 2) (ATo - 3)(L - 2) 
+69 \ - - ~ - - /  +43 5000 96 50 + 141 6 }-4114. 

[7] 

Expression [7] reproduces the model predictions with a mean square deviation of 4%, allows an 

easy computation of the overall heat transfer coefficient and can be fruitfully used in the 

computation of an optimum plant design. 
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